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Abstract. The Long-term Gap-free High-resolution Air Pollutants concentration dataset (LGHAP) provides spatially 14 
contiguous daily aerosol optical depth (AOD) and particulate matters (PMs) concentration at 1-km grid resolution in China 15 
since 2000. This advancement empowered some unprecedented assessments of aerosol variations and its impacts on 16 
environment, health, and climate in the past few years. However, there is a need to improve such a MODIS-like gap-free high 17 
resolution AOD and PM2.5 concentration dataset with new robust features. In this study, we present the version 2 of such a 18 
global-scale LGHAP dataset (LGHAP v2) that was generated using an improved big earth data analytics approach via a 19 
seamless integration of distinct data science, pattern recognition, and deep learning methods. To better reconstruct global AOD 20 
distribution from daily MODIS AOD imageries, multimodal AODs and air quality measurements acquired from relevant 21 
satellites, ground monitoring stations, and numerical models across the globe throughout the past two decades were firstly 22 
harmonized by harnessing the capability of random forest-based data-driven models. Then, an improved tensor-flow-based 23 
AOD reconstruction algorithm was developed to weave harmonized multi-source AODs products together for gap-filling. The 24 
results of ablation experiments demonstrated the improved tensor-flow-based gap filling method has a better performance in 25 
terms of both convergence speed and data accuracy. Ground-based validation results indicated a good data accuracy of the 26 
global gap-filled AOD dataset, with R of 0.85 and RMSE of 0.14 compared against worldwide AOD observations from 27 
AERONET, which is better than the purely reconstructed AODs (R=0.83, RMSE=0.15) and slightly worse than raw MAIAC 28 
AOD retrievals from Terra (R=0.88, RMSE=0.11). A novel deep learning model, named as the scene-aware ensemble learning 29 
graph attention network (SCAGAT), was developed to better predict PM2.5 concentrations across the globe. By gaining better 30 
spatial representativeness of data-driven models across regions, the SCAGAT algorithm performed better during spatial 31 
extrapolation, largely reducing modeling biases over regions even though in situ PM2.5 concentration measurements are limited 32 
or absent. Site-specific validation results indicated that the gap-free PM2.5 concentration estimates exhibit higher prediction 33 
accuracies with R of 0.95 and RMSE of 5.7 μg m−3, compared against the PM2.5 concentration measurements obtained from 34 
priorly held-out sites worldwide. Overall, leveraging state-of-the-art methods in data science and artificial intelligence, a 35 
quality-enhanced LGHAP v2 dataset was generated through big earth data analytics by weaving multimodal AODs and air 36 
quality measurements from different sources together cohesively. The gap-free, high-resolution, and global coverage merits 37 
render LGHAP v2 dataset an invaluable data base to advance aerosol- and haze-related studies and trigger multidisciplinary 38 
applications for environmental management, health risk assessment, and climate change analysis. All gap-free AOD and PM2.5 39 
grids in the LGHAP v2 dataset are shared online publicly (Bai et al., 2023a), with data user guide and relevant visualization 40 
codes available at https://doi.org/10.5281/zenodo.10216396.41 
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1 Introduction 43 

Atmospheric aerosols, either natural or anthropogenic, have been proven to pose significant threats to human health, 44 
ambient environment, and climate (Up in the aerosol, 2022). The risks to public health from aerosol pollution are clear, with 45 
about 4.2 million deaths per year attributable to the exposure of fine aerosol particles, as stated by the World Health 46 
Organization (WHO, 2022). With increased aerosol loading, aerosols can significantly impair atmospheric visibility due to the 47 
hygroscopic effect, thereby reducing direct solar radiation on the Earth’s surface (Liu et al., 2020; Wang and Yang, 2014; Wild 48 
et al., 2021; Yang et al., 2016). In addition to evident impacts on air quality (Li et al., 2017), atmospheric aerosols also have 49 
an important and complex influence on regional and even global climate (Anon, 2022; Guo et al., 2016, 2019; Li et al., 2019; 50 
Yang et al., 2020; Zhao et al., 2020). Therefore, an accurate monitoring of atmospheric aerosol loading is vital for improving 51 
our understanding of human-driven ambient environment and exposure pathways in health risk assessment. 52 

Aerosol optical depth (AOD), a measure of aerosols distributed within an air column from the Earth’s surface to the top 53 
of the atmosphere, has been widely used as a key indicator of total atmospheric aerosol loading. AOD observations from 54 
ground monitoring stations have long been recognized as the ground truth, and a few ground-based aerosol observing networks, 55 
e.g., the internationally collaborated Aerosol Robotic Network (AERONET), China Aerosol Remote Sensing Network 56 
(CARSNET), and Sun−Sky Radiometer Observation Network (SONET), had been established to provide global and/or 57 
regional aerosol measurements (Che et al., 2015; Giles et al., 2019; Li et al., 2018). However, the sparse distribution of ground 58 
monitoring stations poses significant challenges to gain a better understanding of aerosol variations across the globe.  59 

Satellite-based AOD products well bridge such a gap by providing spatially-resolved AOD retrievals with a vast spatial 60 
coverage. A variety of space-borne instruments, e.g., Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate 61 
Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and Polarization and 62 
Directionality of the Earth's Reflectances (POLDER), had been deployed onboard different satellite platforms and launched 63 
into space over the past forty years (Wei et al., 2020).These versatile instruments provide ample AOD and aerosol 64 
measurements, enabling us to map global AOD distribution with finer spatial resolutions in a long run. Nonetheless, satellite-65 
based AOD retrievals often suffer from excessive data gaps due to extensive cloud covers and retrieval failures, significantly 66 
impairing the application potential of these spatially incomplete AOD imageries. Moreover, substantial data gaps in satellite-67 
based AOD products could result in large uncertainties when assessing aerosol impacts on weather and climate. 68 

A variety of gap-filling methods were developed and applied to reconstruct missing values in satellite remotely sensed 69 
AOD images (Wei et al., 2020; Xiao et al., 2021). The simplest method is to fill in data gaps with valid observations from 70 
other data sources, e.g. filling in data gaps in MODIS AOD images from Terra with AOD observations from Aqua (Bai et al., 71 
2019; Sogacheva et al., 2020), or simply to fuse with AOD simulation outputs from numerical models (Xiao et al., 2021). Such 72 
a substitution method is straightforward and effective, especially in an era with big earth observation data. Nonetheless, cross-73 
mission biases among satellite-based retrievals acquired from different platforms and/or instruments are always salient due to 74 
significant differences in both instruments and retrieval algorithms. Bias correction is thus essential to reducing systematic 75 
biases (Bai et al., 2016b, 2016a), and different methods such as linear regression and maximum likelihood estimation were 76 
applied to account for cross-mission biases prior to data merging (Bai et al., 2016a, 2016b, 2019; Ma et al., 2016; Xu et al., 77 
2015). More complex data fusion methods like the Bayesian maximum entropy (Tang et al., 2016; Wei et al., 2021b), were 78 
also applied to fuse AOD products with different spatial resolutions. 79 

Another type of gap-filling methods work in a principle to recover missing information via dominant pattern recognition 80 
and reconstruction over space and time, and the data interpolating empirical orthogonal functions (DINEOF) method is a 81 
representative one (Beckers and Rixen, 2003; Liu and Wang, 2019). Two similar methods were developed to fill in data gaps 82 
in ground-measured PM2.5 concentration time series and geostationary satellite-sensed AOD imageries (Bai et al., 2020; Li et 83 
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al., 2022b). Similarly, Zhang et al. (2022) developed a spatiotemporal fitting algorithm to gap-fill the daily MODIS AOD 84 
product, with AOD values mainly predicted based on annual trend and spatial residues inferred from neighboring pixels. 85 
Nonetheless, data gaps are hardly to be properly reconstructed simply based on a single data source, especially for those with 86 
excessive missing values (e.g., satellite-based AOD). Retrieving the missing AOD information from diversified external data 87 
products via various learning algorithms in artificial intelligence, e.g., numerical AOD simulations (Li et al., 2020; Xiao et al., 88 
2017) and even meteorological factors (Bi et al., 2019), was proven an effective and feasible way for improving spatial 89 
coverage of reconstructed AOD fields.  90 

Machine learning methods have been widely applied to downscale numerical AOD simulations to satellite AOD footprints, 91 
while data gaps in satellite-based AOD imageries were then filled with downscaled data (He et al., 2023; Wei et al., 2021a). 92 
Given the powerful approximation capacity, machine learning methods were extensively used for bias correction in gap-filling 93 
problems over recent years (Bai et al., 2022b, 2023b; He et al., 2023; Wang et al., 2022; Wei et al., 2021a; Xiao et al., 2021). 94 
Leveraging machine learning and tensor completion methods, i.e., a more complex big data analytics framework, was 95 
developed to integrate six satellite-based AOD datasets and numerical aerosol diagnostics as well as in situ air quality 96 
measurements (Bai et al., 2022a). The comparable data accuracy of reconstructed AODs well demonstrate the efficacy of this 97 
gap-filling approach, yielding a long-term gap-free high-resolution MODIS-like AOD and PM concentration dataset (LGHAP 98 
version 1) in China. Despite the good reconstruction performance, further investigations have recently proven that prior 99 
information is vital for tensor-flow-based gap-filling, especially over areas with substantial missing values, and the 100 
reconstruction results would be prone to large uncertainty with few valid observations in the input tensor (Bai et al., 2022a; Li 101 
et al., 2022a, 2022b). Moreover, invariant background and equal weights for different AOD inputs may not only reduce the 102 
convergence speed but degrade the reconstruction accuracy. 103 

Leveraging an improved big earth data analytics approach, a global scale LGHAP dataset, termed as LGHAP v2 hereafter, 104 
was hereby generated to provide daily global gap-free AOD and PM2.5 concentrations at 1-km grid resolution as of 2000. In 105 
order to accommodate global massive earth observations acquired from diverse satellites, numerical models, and air quality 106 
monitoring stations, several new algorithmic improvements were applied to the tensor-flow-based gap filling approach, 107 
including an attention-reinforced tensor construction strategy and an adaptive background information updating scheme, 108 
aiming at improving convergence speed and mitigating modeling bias propagation in numerical AOD diagnostics. Moreover, 109 
a novel deep learning method named as the SCene-Aware ensemble learning Graph ATtention network (SCAGAT) was 110 
developed to fulfill global PM2.5 concentration mapping. Benefiting from the customized algorithmic improvements and the 111 
novel SCAGAT PM2.5 mapping method, LGHAP v2 dataset has not only extended spatial coverage from China to global but 112 
also improved data accuracy compared to LGHAP v1. To our knowledge, this is the first publicly accessible global long-term 113 
gap-free MODIS-like AOD and PM2.5 concentration dataset with daily 1-km resolution, which could be used to help deepen 114 
our understanding of global aerosol pollution variations as well as adverse impacts on public health, ecosystem, weather, and 115 
climate. In the following we provided a more detailed description of diversified data sources analyzed in this study as well as 116 
versatile machine learning and deep learning methods used to manipulate big earth observational data. Performance of 117 
algorithmic improvements as well as the data accuracy of global gap-free AOD and PM2.5 concentration data were then 118 
comprehensively evaluated by comparing against worldwide in-situ AOD and PM2.5 concentration measurements.  119 

2 Data sources 120 

In the current study, we still attempt to synergistically integrate big earth data acquired from diverse sources to generate 121 
global long-term gap-free AOD dataset with daily 1-km resolution, from which spatially contiguous PM2.5 concentration 122 
estimates can be derived by a more robust way to minimize the gaps and maximize the prediction accuracy. As shown in Table 123 
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1, a large variety of big earth data were hereby employed, including gridded AOD products from six polar orbiting satellites 124 
as well as numerically simulated MERRA-2 AOD and aerosol diagnostics, eleven meteorological reanalysis fields, six datasets 125 
of in situ AOD and air pollutants concentration measurements. Additionally, auxiliary variables representing land use and land 126 
cover types, elevation, population density, and vegetation index were used not only to help harmonize discrepancies among 127 
heterogeneous data prior to data integration but also to aid in global PM2.5 concentration mapping. 128 

2.1 Satellite-based AOD products 129 

AOD retrievals derived from MODIS observations on board Terra (AODTerra) with the Multi-Angle Implementation of 130 
Atmospheric Correction (MAIAC) algorithm were hereby used as the benchmark to generate global long-term gap-free AOD 131 
dataset, given their finer spatiotemporal resolution and longer temporal coverage (Lyapustin et al., 2011, 2018; Mhawish et 132 
al., 2019). Previous studies demonstrated a better quality of the MAIAC AOD data relative to other gridded products (Chen et 133 
al., 2021; Martins et al., 2017; Qin et al., 2021), not only data accuracy but also spatiotemporal completeness, even better than 134 
those retrieved with the well-known Dark Target and Deep Blue algorithms (Jiang et al., 2023; Liu et al., 2019). Figure S1 135 
presents spatial and temporal distribution of the coverage ratio of valid AODTerra from 2000 to 2021 at each satellite footprint 136 
across the globe. 137 

Satellite-based AOD retrievals from a few key instruments other than MODIS were applied to support gap filling of 138 
AODTerra. They include: 1) Visible Infrared Imaging Radiometer Suite (VIIRS, on board Suomi-NPP), 2) Multi-angle Imaging 139 
SpectroRadiometer (MISR, on board Terra), 3) Advanced Along-Track Scanning Radiometer (AATSR, on board Envisat), 4) 140 
POLarization and Directionality of the Earth’s Reflectance (POLDER, on board PARASOL), and 5) Sea-Viewing Wide Field-141 
of-View Sensor (SeaWIFS, on board SeaStar). Meanwhile, MAIAC AOD data from MODIS on board Aqua were also applied 142 
as the complementary data set to support gap-filling of AODTerra. Given different overpassing times and temporal spans, these 143 
multisensory AOD products provide complementary observations to help reduce random errors when reconstructing data gaps 144 
in AODTerra due to the increased prior knowledge. A brief summary of these AOD products can be found in Bai et al. (2022a) 145 
and Wei et al. (2020). 146 

2.2 Ground-based AOD observations and air quality measurements 147 

2.2.1 AERONET AOD observations 148 

Ground-based AOD observations from AERONET have long been used as the ground truth to validate AOD retrievals 149 
from other instruments, especially satellite-based AOD retrievals. In this study, AOD observations from AERONET across 150 
the globe during the study period were employed as an independent data source to validate the data accuracy of the gap-filled 151 
AOD dataset. To guarantee adequate number of AERONET AOD samples, the Level 1.5 rather than Level 2.0 AOD 152 
observations were applied, though the latter has stricter screening criteria for quality control. For spatial registration, each 153 
AERONET AOD observation was spatially collocated with mean AOD values over grids within a 50 × 50 km window size. 154 
Figure S2 presents spatial distribution of AERONET sites and air quality monitoring stations providing pivotal AOD and PM2.5 155 
concentration observations used in this study. 156 

2.2.2 Air quality measurements 157 

Concentrations of PM2.5 and other relevant air pollutants like NO2, SO2, PM10, CO were acquired from a few agencies 158 
and/or monitoring centers, such as the United States Environmental Protection Agency, European Air Quality Portal, China 159 
National Environmental Monitoring Centre, Canada National Air Pollution Surveillance, Japan National Institute for 160 

https://doi.org/10.5194/essd-2023-519
Preprint. Discussion started: 5 January 2024
c© Author(s) 2024. CC BY 4.0 License.



 

 5 

Environmental Studies, to name a few. Moreover, air quality measurements acquired from the World’s Air Pollution Index, 161 
an open-source data hub, were included as well. PM2.5 concentrations were used as the learning target for global PM2.5 162 
concentration mapping. Aiming at providing critical prior information to facilitate AOD gap-filling, ground-based air quality 163 
measurements were also used as an important proxy for regional AOD prediction, benefitting from the relatively dense 164 
distribution of air quality monitoring networks as well as good associations between aerosol loadings and regional air pollutants 165 
concentrations.  166 

Atmospheric visibility, a common air quality indicator that is highly associated with aerosol loadings, were acquired from 167 
worldwide meteorological monitoring stations and used as the critical predictor like air pollutants concentrations to predict 168 
AOD over each monitoring site via data-driven modeling. Given much denser distribution of ambient air quality and 169 
meteorological monitoring sites, as shown in Figure S2 for the spatial distribution of global air quality and meteorological 170 
monitoring sites used in this study, as well as the good accuracy of site-based AOD predictions (Bai et al., 2022b; Li et al., 171 
2022b), a global virtual AOD monitoring network was established, providing us with an unparallel opportunity to improve 172 
AOD gap-filling accuracy, especially for regions being disturbed by massive satellite AOD data voids. 173 

2.3 Numerical simulations 174 

2.3.1 MERRA-2 aerosol diagnostics 175 

Despite the coarse spatial resolution and large modeling bias, the Modern-Era Retrospective Analysis for Research and 176 
Applications, version 2 (MERRA-2) aerosol diagnostics including AOD and chemical components like black carbon, organic 177 
carbon, dust, and sulfate aerosols were employed to provide prior information to advance AOD gap-filling. As the NASA’s 178 
latest reanalysis for the satellite era, MERRA-2 is generated using the newly Earth system model of Goddard Earth Observing 179 
System, version 5 (GEOS-5), providing global simulations of a variety of geophysical and chemical variables on the Earth 180 
surface. More detailed descriptions of the assimilation system and the data quality of MERRA-2 aerosol reanalysis can be 181 
found in the literature such as Buchard et al. (2017) and Randles et al. (2017). By taking AODTerra into account as a learning 182 
target, data-driven models were established to downscale MERRA-2 AOD to the level of AODTerra, with MERRA-2 aerosol 183 
diagnostics as well as meteorological, geographical, and socioeconomic factors used as covariates. The downscaling model 184 
not only improves the spatial resolution but also corrects large modeling biases in MERRA-2 AOD. Given the global complete 185 
coverage merit, the downscaled gap-free AOD data were then used as critical prior information to facilitate AOD gap-filling, 186 
in particular over regions lacking observational AOD.  187 

2.3.2 ERA-5 reanalysis 188 

As the latest atmospheric reanalysis produced by the European Center for Medium Weather Forecast, ERA-5 provides 189 
hourly estimates of a variety of atmospheric, terrestrial, oceanic, climatic and meteorological variables. The data are provided 190 
at about 30 km grid resolution on the Earth surface resolving the atmosphere using 137 levels from the surface up to a height 191 
of 80 km, covering the period from January 1940 to the present (Hersbach et al., 2020). Atmospheric parameters including 192 
surface pressure, air temperature, relative humidity, wind speed, total column water, total precipitation, surface solar radiation 193 
downward, instantaneous moisture flux, and boundary layer height were retrieved from ERA-5 and used as important modeling 194 
covariates, not only in data harmonization models to calibrate other AOD and relevant data products to the level of AODTerra, 195 
but also in global PM2.5 mapping models to help approximate nonlinear associations between PM2.5 and AOD. Bilinear 196 
interpolation was applied to map ERA-5 reanalysis data down to the AODTerra footprint for spatial registration. 197 

 198 
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Table 1. Summary of diverse big earth data used in this study to help generate global gap-free AOD dataset at daily/1-km 199 
resolution (LGHAP v2) from 2000 to 2021. 200 

Category Dataset Temporal resolution Spatial resolution Time period 

AOD 

MCD19A2 daily 1-km 2000–2021 
Terra/MISR daily 4.4-km 2000–2021 
NPP/VIIRS daily 5-km 2012–2021 

Envisat/AATSR daily 10-km 2000–2012 
PARASOL/POLDER daily 10-km 2005–2013 
SeaWiFS/OrbView-2 daily 10-km 2000–2010 

AERONET hourly / 2000–2021 

Meteorological  
factors 

Air temperature hourly 

0.25° 2000–2021 

U/V component of wind hourly 
Relative humidity hourly 
Surface pressure hourly 

Boundary layer height hourly 
Total column water vapor hourly 

Surface solar radiation downwards hourly 
Total precipitation Hourly 

Instantaneous moisture flux hourly 
Visibility 3-hour / 2000–2021 

Air quality 
measurements PM2.5, PM10, NO2, SO2, CO hourly / 2000–2021 

Population WorldPop annual 1-km 2000–2020 

Land cover 
Impervious (GISA) annual 30-m 2000–2020 

MCD12Q1 annual 500-m 2000–2021 
NDVI MOD13A3 monthly 1-km 2000–2021 

Aerosol diagnostics MERRA-2 hourly 0.5°×0.625° 2000–2021 
Elevation SRTM DEM / 90 m / 

2.4 Auxiliary data 201 

Several socioeconomic and geographic factors were also applied as covariates to support predictions of AOD and PM2.5 202 
concentration. Gridded population data from WorldPop were used to indicate spatial distribution of residents, which were 203 
applied as a proxy of anthropogenic aerosol emission intensity. To resolve land use dependent aerosol emissions, land cover 204 
types and vegetation index derived from MODIS observations as well as the coverage ratio of impervious surface at the 205 
AODTerra footprint were also applied. Digital elevation data collected from the Shuttle Radar Topography Mission (SRTM) 206 
with a resolution of 1 arc-second were used to characterize potential impacts of topography on aerosol loadings. 207 

3 Methods 208 

3.1 Tensor-flow-based AOD reconstruction 209 

3.1.1 Overview of AOD gap-filling method 210 

Deriving spatially contiguous PM2.5 concentrations from gap-filled AOD images has been proven more promising for a 211 
better spatial analysis of large-scale PM2.5 distribution (Bai et al., 2022b). In this study, the big earth data analytics proposed 212 
in Bai et al. (2022a) was further adapted for generating global gap-free AOD imageries to support various content-based 213 
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mapping. Figure 1 presents the workflow of the improved framework of the big earth data analytics for generating global gap-214 
filled MODIS-like AOD maps. This framework consists of three primary data manipulation procedures including: 1) machine 215 
learned multimodal data homogenization, 2) knowledge-reinforced AOD tensor compiling, and 3) tensor-flow-based AOD 216 
reconstruction. This improved big earth data analytics approach empowered us to weave multimodal AODs and versatile big 217 
earth observations from diversified sources together neatly via a synergy of state-of-the-art machine learning and tensor 218 
completion methods. Since the technical flow of this big earth data analytics framework was well elaborated in Bai et al. 219 
(2022b), we only provided an overview of this method while emphasizing the newly developed algorithmic components in the 220 
following. 221 

 222 
Figure 1. A schematic illustration of the enhanced big earth data analytics for generating MODIS-like global gap-free AOD dataset. 223 

Leveraging random forest-based regression models, multimodal AODs and relevant aerosol data acquired from different 224 
satellites, ground monitoring stations, and numerical models were firstly harmonized to resemble the baseline dataset of 225 
AODTerra, aiming at not only minimizing cross-sensor biases arising from algorithmic differences but also accounting for spatial 226 
heterogeneities due to different spatial resolutions. This data homogenization process is vital for the tensor-flow-based AOD 227 
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gap-filling because the bias-corrected and downscaled AOD estimates were critical inputs to form AOD data cube. More 228 
details related to multisource data homogenization were described in Text S1 in the supporting information. AOD data cube 229 
was then created based on homogenized data at each individual data tile. A proper AOD data cube compiling is undoubtedly 230 
essential for the tensor-flow-based AOD reconstruction. To fill data gaps in each individual AODTerra image, an AOD data 231 
cube was constructed, in our previous gap-filling framework, by simply aggregating harmonized multisensory AOD data on 232 
the same date along with historical AODTerra images resembling similar spatial patterns over the same region. Due to excessive 233 
nonrandom missing values in AODTerra imageries, both downscaled MERRA-2 AOD grids and AOD estimates derived from 234 
air quality and visibility measurements were used conjunctively to identify historical AODTerra imageries with a similar spatial 235 
distribution. The selected historical AODTerra images and bias-corrected AOD images from other satellites on the same date 236 
were individually incorporated as a slice of the tensor. Additionally, dispersed in situ AOD estimates and 5% randomly selected 237 
AOD estimates from the downscaled MERRA-2 data were directly overlaid onto the corresponding AODTerra grids where valid 238 
retrievals were not present. These implementations not only helped improve the gap-filling accuracy but also boosted the 239 
convergence speed given the provision of prior knowledge. 240 

High order singular value decomposition (HOSVD), an orthogonal Tucker decomposition method, was finally applied to 241 
each compiled AOD data cube for tensor-flow-based pattern recognition and tensor completion. Data gaps within the input 242 
AOD tensor were firstly filled with the spatial average of each individual AOD image to initiate tensor decomposition. The 243 
AOD tensor was then decomposed along every two-dimension of AOD tensor independently, and a new tensor was 244 
subsequently reconstructed based on the principal modes learned along every two-dimension of the tensor via a low-rank 245 
approximation (i.e., generating an approximating matrix with reduced rank for compression). During the tensor reconstruction 246 
process, AODTerra observations in the target image to be gap-filled were deemed as the hard data (i.e., true state and invariant 247 
throughout the tensor completion procedure) while multisensory AOD estimates and historical AODTerra images were used as 248 
the soft data (prior information and updated by iterates till convergence). By iteratively adjusting dimension-varied ranks, data 249 
values over grids to be gap-filled were updated and tuned to optimize both spatial homogeneity and information entropy 250 
concurrently (Bai et al., 2020, 2022a). This tensor completion process continued till reaching a good agreement (with a bias 251 
decay ratio <0.1%) between reconstructed values and priorly reserved AODTerra observations. 252 

3.1.2 Algorithmic improvements 253 

To accommodate massive data analytics for global-scale AOD gap-filling, two major algorithmic enhancement modules 254 
were incorporated to help improve the reconstruction efficiency and accuracy, focusing on optimizing data manipulation 255 
procedures in tensor-flow-based AOD gap filling. Rather than treating each slice of data in raw AOD data cube equally, an 256 
attention mechanism was introduced to optimize AOD tensor compiling, aiming at underscoring the importance of those AOD 257 
imageries with fewer data gaps while more closely resembling the target AODTerra imagery during tensor-flow-based AOD 258 
reconstruction. Meanwhile, an adaptive prior information updating scheme was implemented to help mitigate the propagation 259 
of large modeling biases in numerical AOD diagnostics to the final reconstructed fields during the tensor reconstruction 260 
procedure. Moreover, the rank updating strategy was optimized to improve computing efficiency in tensor completion. The 261 
algorithm 1 below presents the pseudo code of the optimized algorithm used for tensor-flow-based AOD reconstruction. 262 

3.1.2.1 Attention-reinforced AOD tensor construction 263 

Both the target data (i.e., AODTerra image to be gap-filled) as well as soft data (i.e., AOD estimates from other data sources 264 
and historical AODTerra imageries) in AOD tensor were treated equally during the tensor decomposition and reconstruction 265 
process in our previous tensor completion framework as shown in Bai et al. (2022a). Such an indifferent data treatment not 266 
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only neglected the information abundance of soft data but also ignored the similarity of spatial patterns between soft and target 267 
data, leading the reconstructed field more likely to resemble the dominant patterns learned from imageries with fewer gaps, 268 
rather than images with higher similarities to the target data. To account for this drawback, an attention mechanism was 269 
implemented to weigh each slice of data in the input AOD tensor, aiming at improving the AOD reconstruction performance 270 
by learning from spatiotemporal features embedded in more relevant data fields rather than all available data. 271 

As a widely used technique in deep learning regimes, attention mechanism is a mimic of cognitive attention allowing the 272 
model to focus on specific parts of the input data, achieved by assigning higher weights to more crucial elements in ensemble 273 
learning. Regarding the tensor-flow-based AOD reconstruction task, data slices with higher similarity to the target image and 274 
fewer data gaps should play more important roles than those less similar ones with extensive data gaps in tensor completion. 275 
Three statistical metrics, i.e., mutual information (Shannon, 1948), spatial coverage ratio of common observations (Rcommon) 276 
between each soft data and hard data, and spatial coverage ratio of extra observations beyond common observations in soft 277 
data (Rextra), were calculated to determine the weight assigned to each data slice of the input AOD tensor. Below gives the 278 
formulas to calculate these three statistical metrics. 279 

𝑀𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)log	( !(#,%)
!(#)!(%)

)#∈(%∈)                                                          (3) 280 

𝑅*+,,+- = Φ(𝑋, 𝑌) × 100%                               (4) 281 
𝑅.#/01 = Φ7𝑋8, 𝑌9 × 100%                      (5) 282 

where 𝑋 and 𝑌 refer to common observations in soft and hard data, respectively. 𝑋8 denotes extra observations in soft data. 283 
𝑝(𝑥, 𝑦) is the joint probability mass function of 𝑋 and 𝑌, 𝑝(𝑥) and 𝑝(𝑦) are the marginal distribution mass function of 𝑋 and 284 
𝑌 , respectively. Φ(𝑋, 𝑌) is the spatial coverage ratio of the common observations, and Φ7𝑋8, 𝑌9 is the spatial coverage ratio 285 
of extra observations in the soft data. By multiplying these three normalized weights to the corresponding soft data, an 286 
attention-reinforced AOD tensor was constructed in turn, which was then used as the input data cube for tensor completion. 287 

Algorithm 1. The pseudo code of the optimized algorithm used for tensor-flow-based AOD reconstruction. 288 
Input: tensor 𝐀 ∈ 𝐑2!×2"×2# with 𝛀 = {(i, j, k): A456	is	observed}, threshold T7, T8 
Output: reconstructed entries 𝐀9 = 𝐀∗(: , : , k;) ∈ 𝐑2!×2" 
1: Attention mechanism: ω6 = Π(MI6, R6< , R6=) 

2: Initialize A456∗ = Q
ω6 ∙ A456																		(i, j, k) ∈ 𝛀
∑ ∑ A45654 																		(i, j, k) ∉ 𝛀 

3:  for r> =
7
>
N> to 1 step -2 do 

4: n7 = n8 = 0 
5:  while ε7 > T7 or (n7 <

7
>
N7 and n8 <

7
>
N8) do 

6:  n7 = n7 + 1, n8 = n8 + 1 
7:  r7 =

?!2!
@A

, r8 =
?"2"
@A

 

8:    𝐀∗ = HOSVD(𝐀∗, rank = {r7, r8, r>}): 
9:  𝐀∗ = S ×7 𝐔(B!) ×8 𝐔(B") ×> 𝐔(B#) 
10:  ε7 = argmin

𝛀

7
8
‖𝐀 − 𝐀∗‖8 

11:  𝐀𝛀∗ = 𝐀𝛀 
12:  𝐀𝛀D

∗ =	ω7𝐀𝛀D
∗ +ω8𝐀𝛀D ,  𝛀d denotes background location 

13: end while 
14: if argmin

𝛀

7
8
‖𝐀 − 𝐀∗‖8 < T8 then 

15: break; 
16: end if 
17: end for 
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3.1.2.2 Adaptive prior information updating 289 

To facilitate AOD gap-filling over regions with abundant data gaps, in our previous method, 5% random samples from 290 
the downscaled MERRA-2 AOD image (AODM2 hereafter) on the same date were used as prior information and placed directly 291 
onto grids without observational AOD (i.e., AODTerra and site-based AOD estimates from air quality and visibility 292 
measurements). Although this empowered us to improve the convergence speed during tensor completion, spatial patterns of 293 
the reconstructed field over regions with excessive data gaps were more likely to resemble the distribution of AODM2 given an 294 
equal weight of the soft and hard data. In other words, sparse observational AODs derived from air quality measurements 295 
played a relatively weak role in tensor completion when confronting with AODM2. In such a context, large modeling biases in 296 
AODM2 might be introduced into the final reconstructed fields. 297 

In this study, we introduced an adaptive prior information updating scheme to help mitigate potential bias propagation 298 
from AODM2. Differing from the strategy used in our previous method, the AOD prior information in the input AOD tensor 299 
was also forced to update by iterations, rather than maintaining them invariant as AODTerra observations throughout the tensor 300 
completion process. Specifically, random AODM2 samples were only used to initiate the tensor construction, while weighted 301 
averages of these prior information and the corresponding reconstructed values were then used as new prior information for 302 
the next iteration. Meanwhile, weights assigned to the reconstructed fields were gradually increased by iteration till 303 
convergence. The ultimate goal was to improve the contribution of reconstructed fields learning from actual observations while 304 
reducing the influence of AODM2. The ablation experiments also demonstrated that such a scheme is effective in mitigating 305 
bias propagation from AODM2, largely improving the reconstruction performance over regions with limited observational data. 306 

3.1.2.3 Optimized global data tile partition and rank updating  307 

Given high spatial and temporal resolution of AODTerra imageries, performing global-scale AOD gap-filling is thus 308 
challenging due to huge computation burdens. To improve the computational efficiency and to make the computing workload 309 
manageable, the following algorithmic improvements were applied. Firstly, global AODTerra data over land were divided into 310 
480 data tiles, with AOD gap-filling performed over each data tile independently. The size of a tile was determined empirically 311 
after performing a set of gap-filling trials with different sizes, and a nominal size of a tile covering 700´700 pixels (could be 312 
different over coastal regions) was finally applied to balance the computing workload and the learning accuracy. Figure S3 313 
presents spatial distribution of optimized data tiles used in this study for global AOD gap-filling. Moreover, a 50-pixel overlap 314 
on the boundary of each tile was enforced, and an inverse distance weighting scheme was finally applied to these overlapped 315 
pixels when mosaicking the gap-filled tiles to eliminate the boundary effect between tiles toward a smooth distribution of AOD 316 
across the globe.  317 

An optimized rank updating strategy was also proposed to improve the learning efficiency. In tensor completion process, 318 
tensor’s decomposition and reconstruction are driven by iteratively updating tensor ranks. To improve the computational 319 
efficiency of global AOD gap-filling, we developed an optimized strategy to update ranks between iterations. Specifically, the 320 
ranks were updated in an ascending order along with the first and second dimensions in the inner loops to enhance spatial 321 
details of reconstructed AOD.  In contrast, ranks were updated in a descending fashion along with the third dimension in the 322 
outer loop to aggregate the target AODTerra image with soft data in a low-rank approximation manner. 323 

3.2 Global PM2.5 concentration modeling 324 

The sparse and uneven distribution of ground-based air quality monitoring stations poses significant challenges to global 325 
PM2.5 concentration mapping, especially over regions of fewer PM2.5 concentration measurements (e.g., Africa and south 326 
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America in Figure S2). Also, how to reinforce the spatial representativeness of data-driven models when extrapolating them 327 
over space is elusive. As a novel idea, SCAGAT was developed and applied to better estimate global PM2.5 concentration from 328 
gap-filled AOD imageries by accounting for spatial representativeness of each data-driven model. Rather than establishing a 329 
global PM2.5 estimation model using all available data pairs collected from worldwide monitoring stations, site-specific PM2.5 330 
estimation models were firstly developed using random forest over each air quality monitoring station with long-term PM2.5 331 
concentration measurements. For a given grid, raw PM2.5 concentration estimates were then estimated from a set of independent 332 
site-specific PM2.5 estimation models, of which should resemble similar geographic scene features as the given grid cell, under 333 
the assumption that the relationship between AOD and PM2.5 is similar over regions with analogue environmental background. 334 
Nine distinct factors covering geodetic location, land cover types, climate zones, AOD levels, and population density were 335 
utilized to characterize scene attributes of each grid cell. Subsequently, a graph attention network was used to aggregate these 336 
raw PM2.5 estimates to better predict PM2.5 concentration over the target grid cell, with weights assigned to the adjacency 337 
matrix in reference to the differences between nine different scene features while the node bias was given as the testing 338 
accuracy of each site-specific PM2.5 prediction model. Figure S4 presents the workflow of the proposed SCAGAT model for 339 
global PM2.5 concentration mapping. This novel ensemble learning method enables us to better predict PM2.5 concentrations 340 
across the globe, especially over regions with few or even none in situ PM2.5 concentration measurements. More details of the 341 
SCAGAT model were introduced in Text S2 as part of the supplementary information. 342 

4  Results 343 

4.1 Efficacy assessment of algorithmic enhancement modules 344 

Ablation experiments were firstly conducted to evaluate the accuracy improvement potential of each newly developed 345 
algorithmic enhancement module. Three case studies were simulated by masking actual AODTerra retrievals with randomly 346 
selected cloud masks on different dates, and methods reinforced with different enhancement modules were then applied to 347 
reconstruct priorly held-out AOD values. For inter-comparison, the AOD gap-filling framework developed by Bai et al. 348 
(2022a), was thus used for benchmarking. As shown in Figure 2, AOD distributions reconstructed with methods embedding 349 
attention mechanism and/or adaptive background information updating modules better resembled actual AODTerra retrievals 350 
than the benchmark method, justifying the efficacy of these two enhancement modules. Given an equal weight of each slice 351 
of data in the input AOD tensor, the reconstructed data fields from the benchmark method were prone to resembling a mean 352 
state determined largely by the principal mode of the input tensor. In this context, peak and/or low values in the target image 353 
might be underestimated (or overestimated for low values) if with relatively few soft data resembling similar patterns in the 354 
input tensor (refer to the third panel in Figure 2). 355 

With the involvement of the attention mechanism, each slice of data in raw AOD data cube was weighted adaptively, 356 
with larger weights given to data slices not only having larger spatial coverage but also with higher similarities to the target 357 
AODTerra image. This strategy is vital to reducing contributions from irrelevant data, especially when facing with unbalanced 358 
data samples in raw AOD data cube, i.e., more irrelevant data and fewer similar imageries. Moreover, the importance of the 359 
target image was maximized during the tensor completion procedure by giving a 100% weight. Compared to the benchmark 360 
method, peak and/or low values in raw AODTerra images were better reconstructed by the method embedding the attention 361 
mechanism. For instance, low AOD values in the north in Figure 2b were apparently overestimated by the benchmark method, 362 
whereas such effect was largely mitigated using methods involving the attention mechanism. 363 

In contrast to the benchmark by using an invariant background throughout the tensor completion, an adaptive background 364 
updating scheme was thus applied to not only accelerate the convergence speed but also mitigate possible error propagation 365 
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from numerical simulations to the final reconstructed fields. As illustrated in Figure S5, compared to the benchmark, the 366 
manually added outliers in raw background fields were better detected and reconciled by the improved method owing to the 367 
involvement of adaptive background updating module, avoiding large error propagation from background fields into the 368 
reconstructed AOD data. The better quality of reconstructed fields derived from improved methods well demonstrate the 369 
efficacy of two newly developed algorithmic enhancement modules. Nevertheless, as compared in Figure 2c, the benefits of 370 
these two enhancement modules were largely cancelled when dealing with images with excessive data gaps, showing a 371 
marginal accuracy improvement relative to the benchmark method. The inherent reason could be attributable to few 372 
observational data in the target image for reference to leverage attention mechanism. 373 

 374 
Figure 2. Performance evaluation of different algorithmic enhancement modules on the reconstructed AOD distribution. Raw AODTerra 375 
denotes actual AOD retrievals from Terra, while simulated AODTerra refers to partially masked AODTerra. The benchmark method is the AOD 376 
gap-filling approach proposed in Bai et al. (2022a). The latter three columns present the reconstructed fields using the enhanced benchmark 377 
method. R and bias denote correlation coefficient and deviations between observed and reconstructed AOD data, respectively. Percent 378 
numbers shown in the two left panels indicate spatial coverage ratio of valid AOD retrievals over the selected scenes. 379 

In Figure 3 we evaluated impacts of missing rate on the AOD gap-filling accuracy. By masking raw AODTerra retrievals 380 
with arbitrarily selected cloud masks, AODTerra images under different missing rates were generated and used as target images 381 
for gap-filling (i.e., images in the top panel). The results show good agreements between observed and reconstructed AOD 382 
fields, even over extreme situations with excessive data gaps, demonstrating an excellent performance of the proposed gap-383 
filling method. As expected, the reconstruction accuracy decreased along with an increase in missing rate. For instance, the 384 
low values in the upper left in raw AODTerra image were not properly reconstructed when missing rate was greater than 80%, 385 
highlighting the vital importance of prior information on the gap-filling accuracy. Therefore, increasing prior information is 386 
the most promising way to improve the accuracy in gap-filling, in particular for those areas with substantial data gaps. 387 

https://doi.org/10.5194/essd-2023-519
Preprint. Discussion started: 5 January 2024
c© Author(s) 2024. CC BY 4.0 License.



 

 13 

 388 
Figure 3. Impacts of missing rate on the AOD gap-filling accuracy. Numbers on the top indicate the percentage of removed AOD data in 389 
raw AODTerra image (top panel). The second row shows the distribution of gap-filled AOD with zoom in maps present in the third row. The 390 
bottom panel presents scatter plots between observed AOD (raw data) and AOD reconstructed from different inputs. 391 

4.2 Data accuracy of global gap-free AOD in LGHAP v2 392 

By comparing against independent AOD observations from AERONET, the data accuracy of gap-free AOD in LGHAP 393 
v2 was comprehensively evaluated across the globe. Figures. 4a–c present spatial distribution of site-specific correlation 394 
coefficient (R), root mean square error (RMSE), and bias between reconstructed AOD and AOD observations from 395 
AERONET, respectively. Regardless of the uneven distribution of ground monitoring stations and the difference in data 396 
samples between sites, the ground validation results indicate good agreements between AOD in LGHAP v2 and AERONET 397 
observations, with an average of site-specific correlation coefficient of 0.76 and RMSE of 0.09 at the global scale. Meanwhile, 398 
the results indicate that site-specific data accuracy metrics exhibit notable spatial heterogeneities across the globe, with larger 399 
bias mainly observed in central and east Asia as well as Africa where often suffer from high aerosol loadings. 400 

Figures. 4d–4i present scatter plots between gap-free AOD and AERONET observations at six major continental regions. 401 
The distinct accuracy metrics across regions also indicate significant spatial heterogeneities in AOD data accuracy. When 402 
compared against AOD observations from AERONET, reconstructed AOD estimates were prone to underestimate large AOD 403 
observations (>0.80) whereas overestimate low values (<0.2) across these six regions. Such an effect is particularly common 404 
in machine learning, largely due to the imbalanced distribution of data values in training samples (Johnson & Khoshgoftaar, 405 
2019; Shi et al., 2022). Likewise, the inherent reasons for this effect in tensor completion might be identical, which could be 406 
largely attributable to the principle of low-rank approximation to fulfil tensor reconstruction and imbalanced (i.e., few 407 
extremes) AOD values in the input tensor. Consequently, the missed AOD extremes were hardly to be reconstructed to their 408 
nominal levels. Rather, the reconstructed values were inclined to resemble a mean state that was determined by principal modes 409 
due to the imbalanced data distribution. 410 
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 411 
Figure 4. Data accuracy of daily gap-free AOD grids in LGHAP v2 dataset by comparing against AOD observations from AERONET across 412 
the globe during 2000–2021. Note AERONET AOD observations were independent data from the gap-filling process. 413 

To verify the data accuracy of imputed AOD estimates, we further compared the data accuracy of gap-filled AODs in 414 
LGHAP v2 dataset with two major gridded products, i.e., satellite-based AOD retrievals from Terra (MCD19A2) and 415 
downscaled MERRA-2 AOD (AODM2). As shown in Table 2, the purely reconstructed AOD estimates have a R of 0.83 and 416 
RMSE of 0.15 compared against AERONET AOD observations at the global scale, comparable to the data accuracy of AODM2 417 
(R=0.83, RMSE=0.14) but lower than that of AODTerra (R=0.88, RMSE=0.11). Nevertheless, the imputed AOD estimates 418 
achieved comparable data accuracies as AODTerra in Africa (R=0.80, RMSE=0.20) and Australia (R=0.62, RMSE=0.08), 419 
largely due to abundant satellite-based AOD retrievals over these two areas (refer to AOD coverage ratio shown in Figure S1) 420 
to facilitate AOD gap-filling via tensor completion. In contrast, the imputed AOD estimates in Europe and Asia have poorer 421 
data accuracies with relative to AODTerra, especially in Asia. Possible reasons could be ascribed to not only extensive missing 422 
values but also significant spatial variations in aerosol loadings as well as severe aerosol pollution levels over these regions. 423 

The gap-free AOD dataset (LGHAP v2) was generated by filling in data gaps in satellite-based AOD retrievals 424 
(MCD19A2) with reconstructed AOD estimates at each collocated footprint over land. Ground validation results indicate that 425 
the gap-filled AOD data in LGHAP v2 are in a good agreement with AERONET AOD observations, with R of 0.85 and RMSE 426 
of 0.14 across the globe (Table 2), slightly worse than that of raw MCD19A2 (R=0.88 and RMSE=0.11) but higher than that 427 
of AODM2 (R=0.83 and RMSE=0.14). This data accuracy outperforms that of the gap-filled AOD dataset (R2=0.6031 and 428 
RMSE=0.1350) generated by Guo et al. (2023), in which missing AODs in MCD19A2 were predicted with versatile proxy 429 
variables (e.g., meteorological factors and population density) via random forest. Moreover, compared to raw MCD19A2 430 
retrievals, gap-filled AOD data in LGHAP v2 tended to overestimate AERONET AOD observations (17.59% versus 11.45% 431 
above the envelope of expected error), implying a greater number of large AOD values were reconstructed in imputed AOD 432 
estimates. This could be also evidenced by larger global mean AOD values (0.19) in LGHAP v2 dataset than that of MCD19A2 433 
(0.17).  434 
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In Figure 5 we compared temporal variations in AOD between LGHAP v2 and AERONET observations at six aerosol 435 
observing sites with long-term monitoring records. Compared to discrete AOD observations from AERONET, gap-free AOD 436 
time series well reconstructed long-term variations of aerosol loading from 2000 to 2021 at these six monitoring sites, with R 437 
ranging 0.83−0.97 and RMSE varying between 0.04 and 0.24. Larger RMSEs at Alta Floresta and Beijing sites are more likely 438 
ascribed to the reconstruction failures of extreme AOD peaks. Referring to histograms of AOD deviations between LGHAP 439 
v2 and AERONET, more than 80% of AOD biases were found to vary between −0.1 and 0.1, demonstrating a high accuracy 440 
of gap-free AOD in LGHAP v2. 441 

Table 2. Inter-comparison of AOD data accuracy between satellite-based retrievals (MCD19A2), numerical aerosol diagnostics 442 
(MERRA-2), reconstructed data, and the final gap-free product by comparing against AOD observations from AERONET 443 
across the globe during 2000−2021. Note reconstructed data refer to imputed AOD estimates while LGHAP v2 refers to the 444 
gap-filled AOD dataset combining both satellite-based retrievals and reconstructed data. The expected error (EE) envelope for 445 
AOD over land was defined as 1.5×AODAERONET ±0.05. 446 

AOD Dataset Region Mean 
AOD 

Number of 
monitors 

Number of 
samples R RMSE Bias Below EE 

(%) 
Within EE 

(%) 
Above EE 

(%) 

MCD19A2  
(AODTerra) 

Global 0.17 1335 402886 0.88 0.11 0.02 13.95 74.59 11.45 

North America 0.11 433 112438 0.83 0.08 -0.01 4.62 80.93 14.44 

South America 0.11 81 28265 0.94 0.07 0.02 14.17 75.85 9.97 

Europe 0.11 208 96715 0.80 0.06 0.02 11.29 82.22 6.49 

Asia 0.31 321 90821 0.90 0.14 0.02 18.79 68.22 12.99 

Africa 0.21 110 48877 0.81 0.19 0.06 31.45 57.11 11.44 

Australia 0.09 28 12427 0.62 0.07 -0.01 6.16 75.34 18.49 

Downscaled  
MERRA-2 
(AODM2) 

Global 0.18 1335 811438 0.83 0.14 0.02 11.76 78.98 9.26 

North America 0.12 433 216264 0.80 0.09 0.00 5.71 86.22 8.07 

South America 0.13 81 49721 0.90 0.11 0.02 12.87 81.64 5.49 

Europe 0.13 208 177125 0.79 0.07 0.01 8.54 86.07 5.39 

Asia 0.29 321 175781 0.78 0.24 0.06 22.54 65.14 12.32 

Africa 0.24 110 88374 0.85 0.15 0.02 16.13 67.59 16.28 

Australia 0.10 28 21051 0.76 0.06 -0.02 2.44 83.60 13.96 

Reconstructed  
AODTerra 

Global 0.21 1335 449452 0.83  0.15  0.01  12.21  65.52  22.27  

North America 0.16 433 129716 0.80  0.10  -0.02  5.23  67.52  27.25  

South America 0.17 81 30073 0.88  0.11  0.00  10.51  67.11  22.38  

Europe 0.16 208 107961 0.73  0.09  0.00  9.63  73.63  16.74  

Asia 0.33 321 107876 0.81  0.24  0.03  18.64  56.60  24.76  

Africa 0.27 110 31568 0.80  0.20  0.06  29.57  53.88  16.55  

Australia 0.13 28 9628 0.62  0.08  -0.03  4.60  64.62  30.77  

LGHAP v2 

Global 0.19 1335 756166 0.85 0.14 0.01 12.96 69.44 17.59 

North America 0.13 433 216055 0.82 0.09 -0.01 4.86 73.12 22.02 

South America 0.14 81 49707 0.90 0.10 0.01 12.57 71.08 16.34 

Europe 0.13 208 176959 0.76 0.08 0.01 10.24 77.40 12.36 

Asia 0.32 321 175728 0.83 0.21 0.03 19.08 61.40 19.52 

Africa 0.23 110 75110 0.81 0.19 0.06 29.61 56.64 13.75 

Australia 0.11 28 21048 0.63 0.08 -0.02 5.11 70.30 24.59 

 447 
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 448 
Figure 5. Temporal variations in monthly AOD over six AERONET sites with long-term AOD observations during 2000–2021. Panels on 449 
the right present histograms of AOD deviations between LGHAP v2 and AERONET observations at each individual site.  450 

4.3 Data accuracy of global gap-free PM2.5 concentrations 451 

Global gap-free PM2.5 concentration estimates were then derived from gap-filled AOD images by taking advantage of the 452 
novel SeGAT model that was specifically developed to fulfil global PM2.5 concentration mapping. More details related to the 453 
performance evaluation of the SCAGAT model were described in another companion study and we hereby focused on the data 454 
accuracy of global gap-free PM2.5 concentration estimates. Figure 6 presents the validation accuracy of daily gap-free PM2.5 455 
concentration estimates by comparing against ground-based PM2.5 concentration records measured at 350 independent (priorly 456 
held-out) monitoring sites. The results indicated that PM2.5 concentration estimates derived from the SCAGAT model have 457 
better agreements with ground measured PM2.5 concentrations across the globe (R=0.91 and RMSE=9.587 µg m-3), 458 
outperforming our traditional PM2.5 prediction models without accounting for spatial representativeness of prediction models 459 
during the spatial extrapolation (Bai et al., 2019, 2022a, 2023). As shown in Figure 6e, by taking advantage of the SCAGAT 460 
model, PM2.5 concentration estimates over China in LGHAP v2 have a higher data accuracy (R=0.97, RMSE=7.93 µg m−3) 461 
than those in LGHAP v1 (R=0.95, RMSE=12.03 µg m−3), neglecting different number of validation samples. The data accuracy 462 
was further improved by correcting modelling biases using sparsely distributed in-situ PM2.5 concentration measurements via 463 
optimal interpolation, with R improved to 0.95 and RMSE reduced down to 5.7 µg m−3. Figs. 6c–6d present site-based 464 
distribution of R and RMSE for LGHAP v2 PM2.5 concentration over each individual validation site. Compared to United 465 
States and Europe, as shown in Figures. 6e–6g, larger PM2.5 concentration biases were more likely to be observed in Asia 466 
given higher PM2.5 loadings therein. 467 
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 468 
Figure 6. Site-based validation accuracy of PM2.5 concentration estimates derived from gap-free AOD images using the proposed SeGAT 469 
method. (a) Scatter plots between PM2.5 estimates derived from the SeGAT model and ground-based PM2.5 concentration measurements. (b) 470 
Same as Fig. 6a but for gap-free PM2.5 estimates fusing ground measured PM2.5 concentration from other sites. (c–d) Site-based correlation 471 
coefficient I and RMSE for LGHAP v2 PM2.5 concentration, respectively. (e–g) Histograms of LGHAP v2 PM2.5 concentration bias over 472 
China, United States, and Europe, respectively. Note ground-based PM2.5 concentration data used here for validation were held out priorly 473 
and used neither in model training nor data fusion procedures.  474 

Table 3 presents data accuracy of gap-free PM2.5 concentration in LGHAP v2 dataset during the period of 2000−2021 475 
over nations with adequate ground-based measurements of PM2.5 concentration records. It indicates that the data accuracy of 476 
PM2.5 concentration estimates varied across regions, with R changing from 0.71 to 0.98 and RMSE ranging between 1.15 and 477 
32.69 µg m−3. Regardless of substantial differences in total number of data pairs across regions, larger RMSEs are mainly 478 
observed in regions like Mongolia (32.69 µg m−3) and India (25.34 µg m−3) where often suffered from high PM2.5 loadings. 479 
The spatially varying accuracy metrics between regions not only highlight the great complexity in large-scale PM2.5 modeling 480 
but underscore the critical importance of confirming spatial representativeness via data-driven models, when applying models 481 
over other regions for data extrapolation. 482 
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Table 3. Data accuracy of gap-free PM2.5 concentrations in LGHAP v2 dataset by comparing against ground-based PM2.5 483 
concentration data in countries with adequate PM2.5 concentration measurements. N denotes the total number of PM2.5 484 
concentration data pairs for calculating R, RMSE and bias. 485 

Country N R 
RMSE 

(μg m−3) 
Bias 

(μg m−3) 
 Country N R 

RMSE 
(μg m−3) 

Bias 
(μg m−3) 

China 3113160 0.97 8.27 0.36  Iran 67434 0.74 10.14 −0.09 

USA 2048983 0.84 3.34 0.06  Brazil 50252 0.81 5.63 0.78 

Japan 1810436 0.96 1.82 0.07  Portugal 47782 0.82 3.49 0.14 

Canada 1206176 0.89 2.12 0.05  Hungary 41524 0.92 4.59 −0.17 

Korea 526138 0.96 3.49 0.16  Sweden 40839 0.91 1.61 −0.23 

France 502555 0.96 2.25 0.13  Norway 40001 0.86 2.45 −0.07 

Germany 472103 0.97 1.94 0.04  Finland 38884 0.93 1.15 −0.08 

Italy 371888 0.93 5.23 0.04  South Africa 35314 0.71 10.84 −2.91 

UK 309181 0.94 1.95 0.11  Serbia 34795 0.87 9.70 0.01 

Spain 297202 0.87 2.63 0.23  New Zealand 26654 0.73 3.63 0.20 

Czech 209274 0.97 3.38 0.24  Colombia 26332 0.95 4.60 0.45 

Australia 208772 0.72 3.70 −0.03  Ukraine 22692 0.84 5.79 −0.08 

India 207974 0.92 25.34 1.64  Bosnia-Herzegovina 20297 0.94 12.08 1.59 

Belgium 177036 0.98 1.54 0.01  Greece 19410 0.79 5.41 −0.10 

Poland 175782 0.95 5.03 0.52  Croatia 17926 0.90 5.82 −0.44 

Turkey 171381 0.84 10.27 −0.99  Switzerland 14719 0.75 3.98 −2.26 

Austria 131186 0.97 2.28 −0.14  Russia 14357 0.84 4.06 0.58 

Netherlands 119047 0.97 1.72 −0.07  Estonia 13793 0.91 1.48 0.19 

Mexico 112379 0.80 11.42 0.45  Lithuania 13405 0.87 4.49 0.07 

Chile 111416 0.80 12.64 0.16  Ecuador 12517 0.88 2.92 0.28 

Slovakia 104892 0.95 3.77 0.18  Vietnam 12480 0.78 12.94 0.63 

Thailand 82206 0.89 13.21 1.25  Macedonia 10416 0.92 10.81 2.17 

Israel 68012 0.83 5.08 0.32  Mongolia 9926 0.91 32.69 −0.17 

In Figure 7, we examined long-term variations in PM2.5 concentration in four different cities during 2000–2021. Compared 486 
to discrete PM2.5 concentration records measured by ground monitors, LGHAP v2 PM2.5 concentration time series enabled us 487 
to examine long-term variability of haze pollutions across the globe given the gap-free merit. Also, the good agreements 488 
between LGHAP v2 PM2.5 concentration time series and the unseen (priorly held-out) ground-based PM2.5 concentration 489 
measurements affirm the high accuracy of LGHAP v2 PM2.5 concentration dataset. Therefore, this gap-free PM2.5 concentration 490 
dataset can be used with high confidence when assessing long-term trends of haze pollution across the globe. As shown, 491 
declining trends in PM2.5 concentration were observed as early as in 2006 in New York (US), whereas apparent reductions 492 
were observed mainly after 2012 in Jilin (China) and 2015 in Toyama (Japan). 493 

Figure 8 presents temporal variations in global annual mean PM2.5 concentration from 2000 to 2021. First of all, the daily 494 
gap-free merit of LGHAP dataset can seamlessly support the derivation of comparable annual mean PM2.5 concentration maps 495 
between years as data gap related biases were eliminated due to the usage of daily gap-free PM2.5 concentration data. On the 496 
other hand, quality-assured annual mean PM2.5 concentration maps enable us not only to pinpoint hotspot regions suffering 497 
from severe haze pollution but also to examine long-term variability of PM2.5 concentrations across the globe. As shown, 498 
Mongolia, north India, eastern China, and central Africa were four major regions with relatively high PM2.5 loadings. 499 
Substantial PM2.5 reductions were observed in eastern China since 2014, with PM2.5 concentration reduced to a level even 500 
comparable to countries in central Asia, and north India was in turn the hotspot region suffering from severer PM2.5 pollutions 501 
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on the planet.  502 

 503 
Figure 7. An inter-comparison of temporal variations in monthly PM2.5 concentration in four different cities between LGHAP v2 and 504 
collocated ground-based PM2.5 measurements during 2000−2021.  505 

5. Discussion 506 

Spatially contiguous AOD and PM2.5 concentration grids are pivotal to regional air quality management, haze pollution 507 
exposure risk assessment, and aerosol radiative forcing diagnosis. By seamlessly gearing up state-of-the-art machine learning 508 
and tensor completion methods, a novel framework of big earth data analytics was developed to fulfil the generation of long-509 
term high-resolution AOD and PM2.5 concentration grids as of 2000 in China (LGHAP v1) in our previous study (Bai et al., 510 
2022a). Multimodal AODs and related air quality measurements from diverse satellites, numerical models, and ground 511 
monitoring stations were firstly harmonized using random forest-based data-driven models. Multisource AOD data flows were 512 
then weaved neatly as the tensor inputs, from which data gaps in daily MODIS AOD imageries were properly reconstructed 513 
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via tensor completion. Finally, gap-free PM2.5 concentration grids were mapped from gap-filled AODs using random forest 514 
through machine-learned regression models. This big data analytics framework provided an effective solution to integrate 515 
multimodal earth observations from distinct sources to generate high-quality data products, and the good data accuracies of 516 
these two gap-free datasets also well demonstrated the efficacy of this framework.  517 

 518 
Figure 8. Spatial distribution of global annual mean PM2.5 concentration derived using LGHAP v2 dataset from 2000 to 2021. 519 

In this study, the big earth data analytics framework proposed in our previous study was adopted to generate global gap-520 
free AOD and PM2.5 concentration grids, i.e., the LGHAP v2 dataset. Despite similar data manipulation procedures, several 521 
new algorithmic enhancement modules were implemented to accommodate the rocketing data size and global scale modeling 522 
demand, not only to improve the computing efficiency but also to reduce modeling biases. Likewise, HOSVD was applied as 523 
the core method for tensor completion to fulfil AOD gap-filling. Nonetheless, previous results indicated a potential drawback 524 
as an equal weight of each data slice in AOD data cube rendered the reconstructed fields more likely to resemble principal 525 
modes determined by HOSVD, and the unique AOD distribution on the target date might be poorly reconstructed, especially 526 
with imbalanced data inputs. To account for this drawback, inspired by widely used attention mechanisms in deep learning 527 
models, we introduced an attention mechanism to weight each data slice in the input tensor, with larger weights assigned to 528 
data better resembling AOD distribution on the target date with more valid observations. In such a research context, spatial 529 
coverage of valid observations in each soft data and mutual information between target and soft data were used as two relevant 530 
metrics to help determine weight assigned to each data slice. A weighted AOD tensor was then calculated and used as the input 531 
tensor to compel tensor completion focusing on data slices more similar to the target image rather than all available data. As 532 
demonstrated by the ablation experiments shown in Figure 2, AOD fields reconstructed from the attention-reinforced tensor 533 
better resembled actual AOD distributions in the target AODTerra images than those derived from raw AOD tensor without 534 
applying attention mechanism.  535 

 Meanwhile, an adaptive background field updating scheme was introduced to update prior information in the target 536 
AODTerra images during each iteration of tensor decomposition and reconstruction, and the ultimate goal was to mitigate the 537 
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influence of prior information on the reconstruction accuracy, particularly reducing the probability of possible propagation of 538 
large modelling biases in AODM2 to the reconstructed AOD fields. Compared to invariant prior information, adaptively updated 539 
prior information enabled us to not only improve the reconstruction efficiency but also significantly reduce the probability of 540 
large error propagation from numerical AOD simulations. Despite these algorithmic improvements, the inter-comparison 541 
results even indicated a slightly reduced data accuracy of gap-filled AODs in China compared to those in LGHAP v1 dataset. 542 
Further investigations revealed this was mainly due to a relatively poor data accuracy of AODM2 data since a global-scale 543 
rather than regional downscaling model was applied to harmonize AODM2 in China. This in turn underscores the vital 544 
importance of data cleaning procedures on reducing bias levels of each supplementary data to manage the total error budget in 545 
the final analyzed data fields when performing big data analytics. 546 

As illustrated in Figure 9, gap-filled AOD grids with a daily 1-km resolution enable us to better monitor global aerosol 547 
distribution and variations in space and time. Aerosol related environmental disturbance episodes such as sandstorm, wildfire, 548 
and haze pollution events can be well captured by rising AODs at the regional scale. Most critically, the gap-filled AOD dataset 549 
provides us an unprecedent opportunity to monitor aerosol loadings and variations even under cloud covers, e.g. haze pollution 550 
episodes over southern India and eastern China shown in Figures 9d and 9e, largely benefiting from the intelligent 551 
spatiotemporal pattern recognition and learning as well as the assimilation of air quality measurements from ground monitoring 552 
stations and numerical aerosol diagnostics. While such a global air quality mapping approach greatly facilitates the surveillance 553 
and management of air pollution around the world, the high-resolution gap-free AOD and PM2.5 concentration dataset would 554 
also largely reduce the uncertainty in health-related aerosol exposure risk assessment. 555 

 556 
Figure 9. An illustration of AOD responses to wild fire, sand storm, and haze pollution episodes across the globe as characterized by gap-557 
free AOD in LGHAP v2 dataset. Global map in the middle panel shows spatial distribution of major land cover types in 2020. 558 

By taking advantage of the LGHAP v2 AOD dataset, global AOD variation trends were carefully examined. Fig. 10a 559 
presents AOD deviations between AOD averages during the first and the second decade across the globe. As shown, substantial 560 
AOD increases in the 21st century present primarily over India (G) and central Africa (I), with remarkable AOD decreases 561 
observed in the middle of South America. In North America, AOD increases were mainly observed in Canada and western US 562 
(A) whereas AOD decreases were found in eastern US (B). Also, referring to temporally varied AOD trends in regions A and 563 
B, we may observe evident AOD increasing trends in US since 2012, while the significant decreasing trends in eastern US 564 
were even totally reversed after 2015. This effect could be partially linked to more frequent and intensive wildfire emissions 565 
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in the second decade of 2000s in north America (Burke et al., 2023; Wei et al., 2021b). Similar effect was also observed in 566 
Europe (C), with an apparent slowdown in AOD decreasing trend after 2010. 567 

 568 
Figure 10．AOD trends over twelve regions of interest across the globe from 2000 to 2021 estimated from gap-free AOD in LGHAP v2 569 
dataset. The top panel shows spatial distribution of global AOD deviations between the first and second decade in 2000s. Twelve diagrams 570 
in the bottom panel show the linear trend of mean AOD over the outlined region of interest at different starting time with varying sizes of 571 
time window. 572 

Apparent inverse effects were also observed in China but with totally different temporal transition patterns. As shown, 573 
statistically significant AOD increasing trends were observed in eastern (D) and southern (E) China in the first decade, whereas 574 
increasing trends started to slow down since 2007 and a sudden reverse to decreasing trends was observed after 2010. More 575 
importantly, this was also the most significant AOD decreasing trend in 2010s around the world. These observational evidences 576 
affirm the great success of clean air actions in improving air quality in China during the past decades (Bai et al., 2022a; Liang 577 
et al., 2020; Zhang et al., 2019). Similar temporal variation pattern was also observed in Middle East (H) but with relatively 578 
weak trends. In contrast, India (G) was the hotspot area showing an increasing trend in AOD throughout the 2000s, despite a 579 
short period of increasing hiatus during 2013–2015. 580 

In this study, global gap-free PM2.5 concentrations were derived on the basis of gap-filled AOD grids by taking advantage 581 
of a novel SCAGAT deep learning model, which was specifically developed to fulfil global scale PM2.5 concentration mapping. 582 
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Differing from many other modeling practices, spatial representativeness of data-driven models was accounted for by 583 
SCAGAT, providing a unique solution to model PM2.5 concentration over regions even without PM2.5 monitoring sites. The 584 
availability of daily gap-free PM2.5 concentration grids also favor the assessment of pandemic impacts on regional air quality. 585 
Figs. 11a and 11b in the middle panel present spatial distribution of PM2.5 concentration before and during the COVID-19 586 
pandemic, respectively. Neglecting long-term variation trends in PM2.5 concentration, the substantial PM2.5 decreases in the 587 
middle and eastern China as well as central Europe clearly indicate the positive effect of pandemic related mobility restrictions 588 
on air quality improvement, by comparing PM2.5 concentration in 2019 and 2020 during the synchronous period. In contrast, 589 
PM2.5 reductions were relatively small in US due to the lack of mobility restriction measures, with apparent PM2.5 reductions 590 
observed mainly in Chicago. Overall, the availability of LGHAP v2 dataset enables us to better investigate global aerosol 591 
variations and to assess PM2.5 related health risk via exposure assessment. 592 

 593 
Figure 11. Impacts of COVID-19 pandemic on PM2.5 concentrations in United States, Europe, and China. PM2.5 concentrations from LGHAP 594 
v2 were averaged over the synchronous period in 2019 and 2020 for inter-comparison.  595 

6. Data Availability 596 

The LGHAP v2 dataset provides global gap-free AOD and PM2.5 concentration grids from 2000 to 2021 with daily 1-km 597 
resolution. To facilitate data sharing, each daily map was saved as one NetCDF file, and data in each individual month was 598 
then archived as a zip file. Due to the data storage limitations, data in one year were archived as one single dataset. Table 4 599 
provides the permanent digital object identifiers for each individual dataset. All datasets were available at the LGHAP 600 
community link via https://zenodo.org/communities/ecnu_lghap (Bai et al., 2023a). Data user guide and visualization codes 601 
(Python, MATLAB, R, and IDL) were also provided to guide the users to retrieve data from the NetCDF files, which can be 602 
accessible at https://doi.org/10.5281/zenodo.10216396.  603 

7. Conclusion 604 

In this study, the LGHAP v2 dataset, a heritage of LGHAP which provides long-term gap-free AOD and PM concentration 605 
grids with daily 1-km resolution in China, was generated to provide gap-free AOD and PM2.5 concentration grids with the 606 
same resolution as of 2000 across the globe, by taking advantage of an improved big earth data analytics approach. Ground 607 
validation results demonstrate high accuracies of these two gap-free products, with AOD having a correlation of 0.85 and 608 
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RMSE of 0.14 compared to AERONET AOD observations, slightly worse than the original MCD19A2 product (R=0.88 and 609 
RMSE=0.11). Site-based validation results also indicate that PM2.5 concentration estimates derived from gap-free AOD via 610 
SCAGAT show a good agreement with held-out ground-based PM2.5 measurements, with R of 0.91 and RMSE of 9.57 µg m−3, 611 
and the data accuracy was further improved to 0.95 and 5.7 µg m−3 with the fusion of ground PM2.5 measurements. To our 612 
knowledge, this is the first two-decade-long global gap-free AOD and PM2.5 concentration dataset with such a high resolution. 613 

Table 4. List of data links for AOD and PM2.5 concentration grids in LGHAP v2 dataset in each individual year of 2000–2021. 614 
Year LGHAP v2 AOD grids LGHAP v2 PM2.5 grids 

2000 https://doi.org/10.5281/zenodo.8281206 https://doi.org/10.5281/zenodo.8307595 

2001 https://doi.org/10.5281/zenodo.8281216 https://doi.org/10.5281/zenodo.8307597 

2002 https://doi.org/10.5281/zenodo.8281218 https://doi.org/10.5281/zenodo.8307599 

2003 https://doi.org/10.5281/zenodo.8281222 https://doi.org/10.5281/zenodo.8307601 

2004 https://doi.org/10.5281/zenodo.8281226 https://doi.org/10.5281/zenodo.8307605 

2005 https://doi.org/10.5281/zenodo.8281228 https://doi.org/10.5281/zenodo.8307607 

2006 https://doi.org/10.5281/zenodo.8287125 https://doi.org/10.5281/zenodo.8308225 

2007 https://doi.org/10.5281/zenodo.8287129 https://doi.org/10.5281/zenodo.8308227 

2008 https://doi.org/10.5281/zenodo.8287133 https://doi.org/10.5281/zenodo.8308231 

2009 https://doi.org/10.5281/zenodo.8287995 https://doi.org/10.5281/zenodo.8308233 

2010 https://doi.org/10.5281/zenodo.8288389 https://doi.org/10.5281/zenodo.8308237 

2011 https://doi.org/10.5281/zenodo.8288395 https://doi.org/10.5281/zenodo.8310586 

2012 https://doi.org/10.5281/zenodo.8288397 https://doi.org/10.5281/zenodo.8310590 

2013 https://doi.org/10.5281/zenodo.8287207 https://doi.org/10.5281/zenodo.8310702 

2014 https://doi.org/10.5281/zenodo.8288387 https://doi.org/10.5281/zenodo.8310704 

2015 https://doi.org/10.5281/zenodo.8289613 https://doi.org/10.5281/zenodo.8310706 

2016 https://doi.org/10.5281/zenodo.8289615 https://doi.org/10.5281/zenodo.8310708 

2017 https://doi.org/10.5281/zenodo.8294100 https://doi.org/10.5281/zenodo.8310711 

2018 https://doi.org/10.5281/zenodo.8301364 https://doi.org/10.5281/zenodo.8313603 

2019 https://doi.org/10.5281/zenodo.8301367 https://doi.org/10.5281/zenodo.8313611 

2020 https://doi.org/10.5281/zenodo.8301375 https://doi.org/10.5281/zenodo.8313613 

2021 https://doi.org/10.5281/zenodo.8301379 https://doi.org/10.5281/zenodo.8313615 

Data gaps in satellite-based AOD images were filled using a similar big data analytics approach as used to generate the 615 
LGHAP dataset in China but with several new algorithmic improvements. The ablation experiments well demonstrated the 616 
effectiveness and advantages of applying attention mechanism to weight each slice of soft data in AOD tensor during the tensor 617 
completion procedure. Also, updating prior information in the target image after each iteration not only helps mitigate the 618 
probability of error propagation from numerical aerosol diagnostics to the final reconstructed field but also improves the 619 
convergence speed of tensor completion. Moreover, this study provides a good illustration of big earth data analytics to 620 
generate high-quality datasets by synergistically integrating and assimilating multimodal data from diverse sources via 621 
machine learning. The last but not least, this big data analytics approach can be also used to fulfil near-term gap-free AOD 622 
mapping by simply replacing aerosol reanalysis with numerical AOD forecasts (e.g., CAMS AOD forecasts). 623 

This study also provides new insights on how to deal with the scaling effect when establishing large scale PM2.5 prediction 624 
models. Rather than creating a global model by gathering all paired data into one training set, site-specific PM2.5 prediction 625 
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models were firstly established using random forest, and a graph attention network was then applied to establish a spatial 626 
interpolation model on the basis of PM2.5 estimates derived from random forest models trained over sites with similar scene 627 
features as the target grid. Since there is no need to establish regional estimation models, such a philosophy not only improves 628 
the modeling accuracy but also solves the scaling problem in large scale modeling practices. 629 

The LGHAP v2 dataset is publicly accessible from the links given above. Given the gap-free and high-resolution merit, 630 
this dataset can be used to deepen our understanding of aerosol climatic effects as well as PM2.5 exposure risks and related 631 
health outcomes at the global scale. Also, the researchers are encouraged to use this dataset to better evaluate the sustainable 632 
development goals related to urban air quality across the globe.  633 
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